
GHIL-Glue: Hierarchical Control with Filtered Subgoal Images

Kyle B. Hatch1 Ashwin Balakrishna1 Oier Mees2 Suraj Nair1 Seohong Park2 Blake Wulfe1

Masha Itkina1 Benjamin Eysenbach3 Sergey Levine2 Thomas Kollar1 Benjamin Burchfiel1

Abstract— Image and video generative models that are pre-
trained on Internet-scale data can greatly increase the gener-
alization capacity of robot learning systems. These models can
function as high-level planners, generating intermediate sub-
goals for low-level goal-conditioned policies to reach. However,
the performance of these systems can be greatly bottlenecked
by the interface between generative models and low-level
controllers. For example, generative models may predict photo-
realistic yet physically infeasible frames that confuse low-level
policies. Low-level policies may also be sensitive to subtle visual
artifacts in generated goal images. This paper addresses these
two facets of generalization, providing an interface to effectively
“glue together” language-conditioned image or video prediction
models with low-level goal-conditioned policies. Our method,
Generative Hierarchical Imitation Learning-Glue (GHIL-Glue),
filters out subgoals that do not lead to task progress and im-
proves the robustness of goal-conditioned policies to generated
subgoals with harmful visual artifacts. GHIL-Glue achieves a
new state-of-the-art on the CALVIN simulation benchmark for
policies using observations from a single RGB camera. GHIL-
Glue also outperforms other generalist robot policies across
3/4 language-conditioned manipulation tasks testing zero-shot
generalization in physical experiments. Additional details are
available at https://ghil-glue.github.io.

I. INTRODUCTION

As Internet-scale foundation models achieve success in
computer vision and natural language processing, a central
question arises for robot learning: how can Internet-scale
models enable embodied behavior generalization? While one
approach is to collect increasingly large action-labeled robot
manipulation training datasets [1]–[3], video datasets (with-
out actions) from the Internet are vastly larger. This action-
free video data can provide robotic control policies with a
wide array of common sense capabilities. However, while
videos may be useful for inferring the steps in a task, such as
how the objects should be moved, or which parts of an object
to manipulate (e.g., grabbing a cup by the handle), they
are less useful for learning details about low-level control.
For example, it is difficult to infer the action commands
for controlling a robot’s fingers from videos of humans
performing manipulation tasks. One promising solution to
this challenge is to employ a hierarchical approach: infer
high-level subgoals in the form of goal images using models
trained on Internet-scale videos, and then fill in the fine-
grained motions with low-level policies trained on robot data.

Modern hierarchical imitation learning algorithms [4], [5]
typically use an image or video generative model trained on

Correspondence to: kyle.hatch@tri.global
1Toyota Research Institute
2UC Berkeley
3Princeton University

Fig. 1: GHIL-Glue. We consider language-conditioned image
and video prediction models that can generate multiple subgoals.
GHIL-Glue has two components: augmentation de-synchronization
(top) and subgoal filtering (bottom). Subgoal filtering: We train
a classifier to identify which subgoal is most likely to progress
towards completing the language instruction. This subgoal and
the image observation are then passed to the low-level policy
to choose a robot action. Augmentation de-synchronization: The
distribution shift between subgoals sampled from the robot dataset
during training and those sampled from the generative model
during inference can degrade low-level policy and subgoal classifier
performance. To robustify the low-level policy and subgoal classifier
to artifacts in generated subgoals, we explicitly de-synchronize the
image-augmentations applied to the current state (State Aug) and
the sampled goal (Subgoal Aug).

Internet-scale data to predict subgoal images, and then use
a low-level control policy to translate these subgoal images
into a sequence of motor commands [4], [5]. This approach
allows the generative model to shoulder the hardest aspects of
robotic generalization, such as generalizing to novel scenes,
objects, and tasks. The low-level policy is then left with the
comparatively easy task of choosing actions to reach these
goals over short time horizons, which can be learned from a
modest amount of robot data.

While this general approach has seen success in prior
robotic manipulation work [4]–[9], the interface between the
high-level planner generating subgoals and the low-level pol-
icy that must reach these subgoals can be brittle. State-of-the-
art (SOTA) image or video prediction models are effective
at generating likely subgoal images given a language prompt
describing the task, but these subgoal generations may not be
functionally useful for control. First, generative models may

https://ghil-glue.github.io
mailto:kyle.hatch@tri.global

occasionally sample subgoals that do not progress towards
completing a given language instruction. If one such “off-
task” subgoal is followed, it can have a compounding errors
effect, leading to subsequent subgoals being increasingly
“off-task.” Second, even if the generated subgoals lead to task
progress, they can contain subtle visual artifacts that degrade
the performance of a naively trained low-level policy.

We propose Generative Hierarchical Imitation Learning-
Glue (GHIL-Glue) (Fig. 1), a method to robustly “Glue”
together image or video generative models to a low-level
robotic control policy. Our method is based on two compo-
nents. First, we filter out “off-task” subgoals that are physi-
cally inconsistent with the commanded language instruction.
We do this by training a subgoal classifier to predict the
likelihood of the transition between the current state and a
given subgoal resulting in progress towards completing the
provided language instruction. We then sample a number of
candidate subgoals from the generative model and choose
the subgoal with the highest classifier ranking. Second, we
identify a simple yet non-obvious data augmentation practice
to robustify both the low-level policy and our subgoal classi-
fier to visual artifacts in the generated subgoals. While image
augmentations are ubiquitous in robot learning methods, our
key finding is that the standard way of applying image
augmentations does not make low-level policies robust to
visual artifacts in generated subgoal images.

Experiments on the CALVIN [10] simulation benchmark
and four language-conditioned tasks on the Bridge V2 phys-
ical robot platform [11] suggest that GHIL-Glue improves
upon prior SOTA methods for zero-shot generalization while
adding minimal additional algorithmic complexity.

II. RELATED WORK

Generative Models for Robotic Control: Prior works
have explored diverse ways to leverage generative models,
such as diffusion models [12], [13] and Transformers [14],
for robotic control. They have employed highly expres-
sive generative models, potentially pre-trained on Internet-
scale data, for low-level control [15]–[20], data augmenta-
tion [21]–[23], object detection [24], [25], semantic plan-
ning [26]–[30], and visual planning [4]–[9]. Among them,
our work is most related to prior works that employ image
or video prediction models to generate intermediate subgoal
images for the given language task [4]–[9]. These works use
diffusion models to convert language instructions into visual
subgoal plans, which are then fed into low-level subgoal-
conditioned policies to produce actions. While sensible, this
configuration leads to failures due to the misalignment of the
generative models and the low-level policies that control the
robot behavior, as shown in our experiments (Section V).

Rejection Sampling: One of our key ideas in this
paper is based on rejection sampling, where we sample
multiple subgoal proposals from an image or video prediction
model and pick the best one based on a learned subgoal
classifier. The idea of test-time rejection sampling has been
widely used in diverse areas of machine learning, such
as filtering-based action selection in offline reinforcement

learning (RL) [31]–[34], response verification in natural
language processing [35]–[37], and planning and exploration
in robotics [28], [29], [38]–[40]. Previous works in robotics
have proposed several ways to filter out infeasible plans
generated by pre-trained foundation models [28], [29], [38],
[39], [41]. Unlike these works, we focus on filtering visual
subgoals instead of language plans [28], [39], [41], and do
not involve any planning procedures [29] or structural knowl-
edge [38]. While the subgoal classifier we train resembles the
classifier from [42], our classifier differs in two key ways.
First, we use our classifier to filter out “off-task” subgoals,
whereas the classifier in [42] is used as a reward function for
training downstream policies. Second, the classifier from [42]
is conditioned on the initial state s0 and the current state s,
whereas our classifier is conditioned on the current state s
and a generated subgoal g.

Goal-Conditioned Policy Learning: Our method is
broadly related to goal-conditioned policy learning [43]–
[45], language-conditioned policy learning [46]–[50], and
hierarchical control [4], [5], [51]–[54]. Most prior works in
hierarchical policy learning either train a high-level policy
from scratch that produces subgoals or latent skills [52],
[55]–[68] or employ subgoal planning [65], [69]–[81]. Un-
like these works, we do not train a high-level subgoal
prediction model from scratch nor involve a potentially
complex planning procedure. Instead, we sample multiple
potential subgoals from a pre-trained (or potentially fine-
tuned) image or video prediction model and pick the best
one based on a trained subgoal classifier. Among hierarchical
policy methods, perhaps the closest work to ours is IRIS [51],
which trains a conditional variational autoencoder to generate
subgoal proposals and selects the best subgoal that maxi-
mizes the task value function. While conceptually similar,
our method differs from IRIS in that we do not assume access
to a reward function in order to train a value function. Our
classifier is trained on trajectories consisting only of images
and language descriptions.

Diffusion Model Guidance: The generative models we
consider in our paper [82], [83] are diffusion-based models
trained using classifier-free guidance (CfG) [84]. Although
we use a large value for the language-prompt guidance
parameter at inference in our experiments, we find that
producing “off-task” subgoals is still a common failure mode
that is not solved by increasing this parameter alone.

Classifier guidance [12], [85], [86] is also a plausible
alternative to rejection sampling, but there are some practical
challenges in training a subgoal classifier for this purpose.
First, the diffusion models we consider use latent diffu-
sion [87], and therefore would require training the subgoal
classifier to operate in the latent space of the diffusion model.
Second, the subgoal classifier would need to be trained on
noised data in order to guide the diffusion denoising process
of the generative model. Nevertheless, classifier guidance is
a potentially appealing direction for future work.

III. PRELIMINARIES

We consider the same problem setting as [4], where the
goal is for a robot to perform a task described by some
previously unseen language command l. To do this, we
consider the same three dataset categories as in [4]: (1)
language-labeled video clips Dl which contain no robot
actions; (2) language-labeled robot data Dl,a that includes
both language labels and robot actions; (3) unlabeled robot
data that only includes actions Da. The dataset Dl,a consists
of a set of trajectory and task language pairs, {(τn, ln)}Nn=1,
and a trajectory contains a sequence of state, snt ∈ S, and
action, ant ∈ A, pairs, τn = (sn0 , a

n
0 , s

n
1 , a

n
1 , . . .). Given these

datasets, we assume access to two learned modules:
1) a subgoal generation module from which we can

sample multiple possible future subgoals. This can be
trained on Dl and Dl,a.

2) a low-level goal-reaching policy that chooses actions
to reach generated subgoals. This can be trained on Da

and/or Dl,a.
Our contribution is a set of approaches to robustify the
interface between these two modules.

While GHIL-Glue can be applied to any hierarchical
imitation learning method consisting of the two components
mentioned above, in this work we apply GHIL-Glue to two
specific algorithms: (1) UniPi [5], in which a high-level
model generates a subgoal video, and a low-level inverse-
dynamics model predicts the actions needed to “connect” the
images in the video, and (2) SuSIE [4], in which a high-level
model generates a subgoal image by “editing” the current
image observation, and a goal-conditioned policy predicts
actions to achieve the subgoal image. We define subgoals,
g ∈ G, as video or image samples from the high-level models
used in these algorithms.

IV. GHIL-GLUE

Many modern hierarchical policy methods aim to improve
generalization by using language-conditioned image or video
models to generate intermediate subgoal images for a given
task. The interface between these image or video models and
the low-level policies that choose actions to reach generated
subgoals is a major performance bottleneck for these hierar-
chical policy methods. GHIL-Glue improves the robustness
of this interface (see Fig. 1). In Section IV-A, we propose
a simple method to filter subgoals that do not progress
towards completing the task specified by language instruction
l. Then, in Section IV-B, we describe a simple yet non-
obvious data augmentation practice to robustify the low-level
policy and our subgoal classifier to harmful visual artifacts
in the generated subgoals. We note that the two components
of GHIL-Glue work together synergistically: when applied
together, the resulting performance improvement is larger
than the sum of improvements that results from applying
each component individually (see Section V).

A. Subgoal Filtering

The image and video generative models we consider are
first pre-trained on general Internet-scale image and video

data, and then fine-tuned on a modest amount of robot data.
Despite being fine-tuned on robot data, a common failure
mode we observe across different models is that, over the
course of executing a task, the model begins to go “off-
task,” meaning that it starts generating subgoals that are
consistent with the current image observation but that do not
progress towards completing the language instruction l. We
hypothesize that this is due to the distribution shift between
the Internet data these image or video prediction models are
pre-trained on and the robot data they are fine-tuned on.

To address this challenge, we train a subgoal classifier
fθ(s, g, l) on Dl and/or Dl,a that predicts the probability
that the transition between the current image observation
s and the next subgoal g makes progress towards com-
pleting language instruction l. Note that although we train
the subgoal classifier on robot data in our experiments,
action labels are not used in the training of the classifier,
and the subgoal classifier can be trained on action-free
data, including large, non-robotics Internet video datasets.
During training, we sample positive examples of state-goal
transitions for l from the set of trajectories that successfully
complete the instruction. We construct negative examples in
the following three ways:

1) Wrong Instruction: (s, g, l′) where l′ is sampled from
a different transition than s and g.

2) Wrong Goal Image: (s, g′, l) where g′ is sampled
from a different transition than s and l.

3) Reverse Direction: (g, s, l), where the order of the
current image observation and the subgoal image have
been switched. This is important for learning whether
a candidate goal image is making temporal progress
towards completing the language instruction.

We refer to this dataset of negative examples constructed
from Dl,a as D−

l,a. We then train the subgoal classifier
by minimizing the binary cross entropy loss between the
positive examples and the constructed negative examples (see
Appendix A for additional training details):

J (θ) = E
(s,g,l)∼Dl,a

[log (fθ(s, g, l))]

+ E
(s−,g−,l−)∼D−

l,a

[
log

(
1− fθ(s

−, g−, l−)
)]

.
(1)

Given a set of K subgoals predicted by the image or video
model, GHIL-Glue uses the classifier to select the subgoal
with the highest progress probability and passes that subgoal
to the low-level policy for conditioning.

B. Image Augmentation De-Synchronization

While the method proposed in Section IV-A increases
robustness to predicted subgoals that do not make task
progress, generated subgoals can also contain visual arti-
facts that degrade the performance of both the low-level
control policy and the subgoal classifier. This performance
degradation results from the distribution shift between the
subgoal images seen by the policy during training, which
come from the robot dataset, and the subgoal images seen

during inference, which come from the generative model.
Ideally, the low-level policy and subgoal classifier would
be trained on the same distribution of generated subgoal
images that they will see at inference time. However, due
to the high degree of variance in sampling images from a
generative model, there is not a clear way to obtain generated
subgoal images that match the actual future states reached
in trajectories in the training data. To address this issue, we
identify a simple yet non-obvious data augmentation practice
to train the low-level policy and subgoal classifier on goals
from the robot dataset while also robustifying them to visual
artifacts in generated subgoals.

Applying image augmentation procedures such as random
cropping or color jitter during training is a standard approach
in image-based robot learning methods [88] to improve the
robustness of learned models to distribution shifts between
their training and evaluation domains. More formally, let
ϕ be the set of image augmentation parameters to be ran-
domly sampled from space Φ, pΦ(·) be some probability
distribution over Φ, and let ϕ̂ ∼ pΦ(·) be some realization
of augmentations sampled from pΦ(·). Typically, for each
training sample, a different value ϕ̂ is applied during training
to make a model robust to any augmentation in the space Φ.

For both the low-level goal-conditioned policy and the
subgoal classifier, each training sample includes two images:
the current state s and the corresponding goal g. Standard
practice is to sample augmentation parameters ϕ̂ and apply
them to all images in a given training sample [4], [89],
which corresponds to applying the same ϕ̂ to both s and
g. In a non-hierarchical policy setting, this makes sense,
because at inference time s and g will both be sampled
from the camera observations of the current environment
instantiation. However, when using an image or video pre-
diction model for subgoal generation, at inference time the
low-level policy and subgoal classifier will see states from
the camera observations, but the goals will be generated
by the image or video prediction model. There will often
be differences in the visual artifacts between a camera
observation s and the corresponding generated subgoal image
g, such as differences in color, contrast, blurriness, and the
shapes of objects, which can degrade the performance of
low-level policies and subgoal classifiers.

To encourage robustness to this distribution shift, we sam-
ple separate augmentation parameters for s and g, denoted by
ϕ̂s and ϕ̂g (i.e., we de-synchronize the image augmentations
applied to s and g). Random cropping, brightness shifts,
contrast shifts, saturation shifts, and hue shifts comprise
our space of augmentations (see Appendix B for details).
Concretely, for each s and g pair sampled during training,
a different random crop, brightness, contrast, saturation, and
hue shift are applied to s than are applied to g. This forces the
low-level policy and the subgoal classifier to learn to make
accurate predictions on (s, g) pairs that have differences in
visual artifacts.

While image augmentations are ubiquitous in robot learn-
ing methods, our experiments show that the standard way of
applying image augmentations for goal-conditioned policies

Fig. 2: Experimental Domains. Simulation Environments (Left):
Train/test environments in the CALVIN simulation benchmark. The
environments each have different table textures, furniture positions,
and initial configurations of the colored blocks. Each environment
contains 34 tasks, each with an associated language instruction.
To test zero-shot generalization, environment D is held out for
evaluation. Physical Environments (Right): We consider four test
scenes in the Bridge V2 robot platform with four total language
instructions. To test zero-shot generalization, these test scenes con-
tain novel objects, language commands, and object configurations
not seen in the training data.

and classifiers is deficient for the hierarchical policy meth-
ods that we consider. We also note that augmentation de-
synchronization is applied not only to the policy, but also to
the subgoal classifier (Section IV-A), which has a significant
impact on overall performance (Section V).

V. EXPERIMENTS

We study the degree to which GHIL-Glue improves ex-
isting hierarchical imitation learning algorithms across a
number of tasks in simulation and physical experiments that
assess zero-shot generalization. We analyze the influence of
each component of GHIL-Glue on task performance and also
perform extensive qualitative analysis in Appendix C.

A. Experimental Domains

We evaluate our method on the CALVIN [10] simulation
benchmark and the Bridge V2 [11] physical experiment setup
with a WidowX250 robot.

Simulation Experiment Setup: Simulation experiments
are performed in the CALVIN [10] benchmark, which fo-
cuses on long-horizon language-conditioned robot manipula-
tion. We follow the same protocol as in [4], and train on data
from three environments (A, B, and C) and test policies on
a fully unseen environment (D). Each environment contains
a Franka Emika Panda robot arm that is placed in front
of a desk with a variety of objects and is associated with
34 possible tasks (Fig. 2). The held-out environment (D)
contains unseen desk and object colors, object and furniture
positions, and object shapes. The corresponding language
instructions are similarly held out.

Physical Experiment Setup: For physical experiments,
we use the same datasets as in [4] for training both
the high-level image prediction model and the low-level
goal-conditioned policy. The Bridge V2 dataset contains
45K language-annotated trajectories, which are used for the
language-labeled robot dataset Dl,a. The remaining 15K
trajectories are used for the action-only dataset Da. As

Fig. 3: GHIL-Glue Subgoal Filtering. We visualize policy rollouts of SuSIE without subgoal filtering vs. GHIL-Glue SuSIE with subgoal
filtering. We show the states reached every 20 timesteps (top row) and the corresponding predicted subgoals (bottom row). Without subgoal
filtering, the subgoal at t = 60 is not consistent with making progress towards placing the pepper in the bowl, causing the robot to dither
and drop the pepper. When subgoal filtering is used, the selected subgoals make iterative progress towards a successful task completion.

in [4], we use a filtered version of the Something-Something
V2 dataset [90] with the same filtering scheme as in [4]
(resulting in 75K video clips) as our video-only dataset Dl.

We test our policies on four tasks on four different
cluttered table top scenes (Fig. 2) on the Bridge V2 physical
robot platform. These environments require generalizing to
novel scenes, with novel objects, and with novel language
commands that are not seen in the Bridge V2 dataset.

B. Comparison Algorithms

To evaluate GHIL-Glue’s performance, we study the im-
pact of applying it to two SOTA hierarchical imitation
learning algorithms: SuSIE [4] and UniPi [5]. To evaluate
the importance of hierarchy more generally, we also compare
GHIL-Glue to a flat language-conditioned diffusion policy
(LCBC Diffusion Policy). Finally, we consider ablations
where we separately study the impact of each of our pro-
posed contributions: subgoal filtering (Section IV-A) and
de-synchronizing augmentations (Section IV-B). For phys-
ical experiments, we additionally consider a comparison to
OpenVLA [91], which is trained on the Open X-Embodiment
dataset [2] (which includes the Bridge V2 dataset).

1) LCBC Diffusion Policy: Low-level language-
conditioned behavior cloning diffusion policy [16]
trained only on robot trajectories with language an-
notations. We use the same implementation as in [4].

2) OpenVLA [17]: A SOTA language-conditioned
vision-language-action model (VLA) trained on the
Open X-Embodiment dataset [2] (which includes the
entirety of the Bridge V2 dataset).

3) SuSIE [4]: A method which fine-tunes Instruct-
Pix2Pix [82], an image-editing diffusion model, to
generate subgoal images given the current image ob-
servation. Low-level control is performed using a goal-
conditioned policy. For SuSIE and all methods that
build on it, we predict subgoals 20 steps in the future
as in the original paper.

4) UniPi [5]: A method which fine-tunes a language-
conditioned video prediction model on robot data and
then uses an inverse dynamics model for low-level goal
reaching. For UniPi and all methods that build on it, we
predict video sequences of 16 frames. As the original
UniPi model is not publicly available, we re-implement
UniPi by fine-tuning the video model from [83].

5) GHIL-Glue (SuSIE / UniPi): GHIL-Glue applied on
top of either SuSIE or UniPi. For all experiments we
implement the subgoal filtering step by sampling four
to eight subgoals from the high-level video prediction
model and selecting amongst them (see Appendix D
for details). We directly filter the subgoal images
generated by the SuSIE model. We filter the video
sequences generated by the UniPi model based on the
final frame of each sequence.

6) GHIL-Glue (SuSIE / UniPi) - Subgoal Filtering
Only: GHIL-Glue applied to SuSIE or UniPi us-
ing subgoal filtering but without augmentation de-
synchronization.

7) GHIL-Glue (SuSIE / UniPi) - Aug De-sync Only:
GHIL-Glue applied to SuSIE or UniPi using augmen-
tation de-synchronization but without subgoal filtering.

C. Experimental Results

Simulation Experiments: We present results on the
CALVIN benchmark in Table III. Applying GHIL-Glue
yields significant performance increases for SuSIE and
UniPi, increasing the average successful task sequence length
from 2.94 to 3.69 for SuSIE and from 1.02 to 1.56 for
UniPi. GHIL-Glue (SuSIE) achieves a new SOTA on
CALVIN for policies that use observations from a single
RGB camera. The two components of GHIL-Glue (subgoal
filtering and image augmentation de-synchronization) im-
prove performance when applied individually, but, when ap-
plied together, these components build on each other, leading
to a performance increase greater than the sum of the indi-
vidual benefits. Specifically, for SuSIE, image augmentation

Tasks completed in a row
Method 1 2 3 4 5 Avg. Len.

LCBC Diffusion Policy 68.5% 43.0% 22.5% 11.0% 6.8% 1.52
SuSIE [4] 89.8% 75.0% 57.5% 41.8% 29.8% 2.94
GHIL-Glue (SuSIE) - Aug De-sync Only 95.2% 84.0% 69.5% 56.0% 46.2% 3.51
GHIL-Glue (SuSIE) - Subgoal Filtering Only 88.5% 75.5% 56.2% 43.0% 32.5% 2.96
GHIL-Glue (SuSIE) 95.2% 88.5% 73.2% 62.5% 49.8% 3.69
UniPi [5] 56.8% 28.3% 12.0% 3.5% 1.5% 1.02
GHIL-Glue (UniPi) - Aug De-sync Only 60.2% 29.5% 12.5% 5.5% 1.8% 1.1
GHIL-Glue (UniPi) - Subgoal Filtering Only 69.5% 40.0% 15.8% 6.5% 4.2% 1.36
GHIL-Glue (UniPi) 75.2% 44.8% 19.7% 11.2% 5.5% 1.56

TABLE I: CALVIN: Simulation Results. Success rates on the validation tasks from the held-out D environment of the CALVIN zero-shot
generalization challenge averaged across 4 random seeds. Applying GHIL-Glue to SuSIE and UniPi significantly improves performance
over their respective base methods. GHIL-Glue (SuSIE) significantly outperforms all other methods, achieving a new state-of-the-art on
the CALVIN benchmark for policies using observations from a single RGB camera.

Task OpenVLA [91] SuSIE [4] GHIL-Glue (SuSIE)

Scene A Put Sushi On Towel 22/30 19/30 28/30
Scene B Put Red Bell Pepper in Bowl 14/30 12/30 16/30
Scene C Open Drawer 23/30 19/30 22/30
Scene D Put Sushi in Bowl 15/30 15/30 18/30

TABLE II: Bridge V2 Physical Experiments Results. Success rates across four tasks on four physical robot scenes (pictured in Fig. 2)
that test zero-shot generalization to novel objects, novel language commands, and novel scene configurations. GHIL-Glue applied to SuSIE
outperforms SuSIE across all tasks and outperforms OpenVLA on 3 out of 4 tasks.

de-synchronization and subgoal filtering individually yield
increases in sequence length of 0.56 and 0.02 respectively,
whereas when applied together they yield an increase of
0.75. Similarly, for UniPi, the individual improvements yield
increases in sequence length of 0.08 and 0.34 respectively,
compared to an increase of 0.54 when applied together.

When applied alone, image augmentation de-
synchronization increases the average successful task
sequence length from 2.94 to 3.51 for SuSIE and from
1.02 to 1.1 for UniPi. We hypothesize that augmentation
de-synchronization improves performance a large amount
with SuSIE because its low-level policy is conditioned
on a camera observation image s from the environment
and a subgoal image g generated by the image model.
When generalizing to the held-out test environment D,
the SuSIE image model generates subgoal images with
visual discrepancies from the camera observation images.
In contrast, the UniPi video model predicts a sequence of
frames as opposed to a single subgoal image. The UniPi
low-level policy functions as an inverse dynamics model,
choosing actions to link between the frames of the generated
subgoal video, and is therefore conditioned on an s and g
that both come from the predicted subgoal video.

When applied alone, subgoal filtering has a small effect
on SuSIE, while on UniPi it increases the average successful
task sequence length from 1.02 to 1.36. This suggests that
unless the SuSIE low-level policy is made robust to visual
artifacts in generated subgoals, simply selecting the most
task relevant subgoal is insufficient to improve performance.
As discussed previously, the SuSIE low-level policy is more
sensitive to visual artifacts in generated subgoals than is the
UniPi inverse dynamics model.

Physical Experiments: We present results (Table II) com-
paring GHIL-Glue (SuSIE) to OpenVLA and SuSIE across

four environments on the Bridge V2 robot platform that
require interacting with a number of objects on a cluttered
table (Fig. 2). These environments require generalizing to
novel scenes, with novel objects, and with novel language
commands that are not seen in the Bridge V2 dataset. GHIL-
Glue applied to SuSIE outperforms SuSIE across all tasks
and outperforms OpenVLA, a 7-billion parameter SOTA
VLA, on 3 out of 4 tasks. Significantly, the baseline SuSIE
implementation does not outperform OpenVLA on a single
task, whereas GHIL-Glue (SuSIE) outperforms OpenVLA
on 3 out of 4 tasks, demonstrating that hierarchical goal
conditioned architectures with well-tuned interfaces between
the high and low-level policies can outperform SOTA VLA
methods on zero-shot generalization tasks. See Appendix C
for qualitative examples of success and failure cases of
GHIL-Glue in physical experiments, and for examples of
generated subgoals for a subset of the tasks in addition to
their scores under our subgoal filtering method.

VI. CONCLUSION

We present GHIL-Glue, a method for better aligning image
and video prediction models and low-level control policies
for hierarchical imitation learning. Our key insight is that
while image and video foundation models can generate
highly realistic subgoals for goal-conditioned policy learning,
when generalizing to novel environments, the generated
images are prone to containing visual artifacts and can
be inconsistent with the task the robot is commanded to
perform. GHIL-Glue provides two simple ideas to address
these challenges, leading to a significant increase in zero-
shot generalization performance over prior work both in the
CALVIN simulation benchmark and in physical experiments.

One exciting avenue for future work would be to explore
training image or video prediction models for subgoal gener-
ation on a broader distribution of robot data, such as the data

available in the Open-X embodiment dataset [2]. Another
interesting direction would be to filter subgoals based on the
capability of the low-level policy to actually achieve them,
for example, by training a goal-conditioned value function
for the low-level policy and using it to evaluate subgoal
feasibility. Finally, while we trained the subgoal classifiers
on robot datasets, in principle these could be trained in the
same way on much larger, non-robotics video datasets in
order to improve generalization.

REFERENCES

[1] S. Dasari, F. Ebert, S. Tian, S. Nair, B. Bucher, K. Schmeckpeper,
S. Singh, S. Levine, and C. Finn, “Robonet: Large-scale multi-robot
learning,” in Conference on Robot Learning (CoRL), 2019.

[2] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Maddukuri,
A. Gupta, A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar,
A. Jain, A. Tung, A. Bewley, A. Herzog, A. Irpan, A. Khazatsky,
A. Rai, A. Gupta, A. Wang, A. Kolobov, A. Singh, A. Garg,
A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary,
A. Jain, A. Balakrishna, A. Wahid, B. Burgess-Limerick, B. Kim,
B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu, C. Le, C. Finn,
C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu,
C. Devin, D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah,
D. Büchler, D. Jayaraman, D. Kalashnikov, D. Sadigh, E. Johns,
E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao, F. V. Frujeri, F. Stulp,
G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi,
G. Berseth, G. Kahn, G. Yang, G. Wang, H. Su, H.-S. Fang, H. Shi,
H. Bao, H. B. Amor, H. I. Christensen, H. Furuta, H. Walke, H. Fang,
H. Ha, I. Mordatch, I. Radosavovic, I. Leal, J. Liang, J. Abou-Chakra,
J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu, J. Bohg, J. Bingham,
J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun, J. Luo, J. Gu, J. Tan,
J. Oh, J. Wu, J. Lu, J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher,
J. Tompson, J. Yang, J. Salvador, J. J. Lim, J. Han, K. Wang, K. Rao,
K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg,
K. Byrne, K. Oslund, K. Kawaharazuka, K. Black, K. Lin, K. Zhang,
K. Ehsani, K. Lekkala, K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P.
Singh, K.-H. Zeng, K. Hatch, K. Hsu, L. Itti, L. Y. Chen, L. Pinto,
L. Fei-Fei, L. Tan, L. J. Fan, L. Ott, L. Lee, L. Weihs, M. Chen,
M. Lepert, M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro,
M. Spero, M. Du, M. Ahn, M. C. Yip, M. Zhang, M. Ding, M. Heo,
M. K. Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen,
N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu, N. D. Palo, N. M. M.
Shafiullah, O. Mees, O. Kroemer, O. Bastani, P. R. Sanketi, P. T.
Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan, P. Mitrano, P. Sermanet,
P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian,
R. Doshi, R. Mart’in-Mart’in, R. Baijal, R. Scalise, R. Hendrix, R. Lin,
R. Qian, R. Zhang, R. Mendonca, R. Shah, R. Hoque, R. Julian,
S. Bustamante, S. Kirmani, S. Levine, S. Lin, S. Moore, S. Bahl,
S. Dass, S. Sonawani, S. Song, S. Xu, S. Haldar, S. Karamcheti,
S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian,
S. Ramamoorthy, S. Dasari, S. Belkhale, S. Park, S. Nair, S. Mirchan-
dani, T. Osa, T. Gupta, T. Harada, T. Matsushima, T. Xiao, T. Kollar,
T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell,
T. Chung, V. Jain, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard,
X. Chen, X. Chen, X. Wang, X. Zhu, X. Geng, X. Liu, X. Liangwei,
X. Li, Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar, Y. Zhou, Y. Zhu,
Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Dou, Y. Cho, Y. Lee, Y. Cui,
Y. Cao, Y.-H. Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li,
Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu, Z. J. Cui, Z. Zhang, Z. Fu, and
Z. Lin, “Open X-Embodiment: Robotic learning datasets and RT-X
models,” 2024.

[3] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karam-
cheti, S. Nasiriany, M. K. Srirama, L. Y. Chen, K. Ellis, P. D.
Fagan, J. Hejna, M. Itkina, M. Lepert, Y. J. Ma, P. T. Miller, J. Wu,
S. Belkhale, S. Dass, H. Ha, A. Jain, A. Lee, Y. Lee, M. Memmel,
S. Park, I. Radosavovic, K. Wang, A. Zhan, K. Black, C. Chi, K. B.
Hatch, S. Lin, J. Lu, J. Mercat, A. Rehman, P. R. Sanketi, A. Sharma,
C. Simpson, Q. Vuong, H. R. Walke, B. Wulfe, T. Xiao, J. H. Yang,
A. Yavary, T. Z. Zhao, C. Agia, R. Baijal, M. G. Castro, D. Chen,
Q. Chen, T. Chung, J. Drake, E. P. Foster, J. Gao, D. A. Herrera,
M. Heo, K. Hsu, J. Hu, D. Jackson, C. Le, Y. Li, K. Lin, R. Lin, Z. Ma,
A. Maddukuri, S. Mirchandani, D. Morton, T. Nguyen, A. O’Neill,

R. Scalise, D. Seale, V. Son, S. Tian, E. Tran, A. E. Wang, Y. Wu,
A. Xie, J. Yang, P. Yin, Y. Zhang, O. Bastani, G. Berseth, J. Bohg,
K. Goldberg, A. Gupta, A. Gupta, D. Jayaraman, J. J. Lim, J. Malik,
R. Martı́n-Martı́n, S. Ramamoorthy, D. Sadigh, S. Song, J. Wu, M. C.
Yip, Y. Zhu, T. Kollar, S. Levine, and C. Finn, “Droid: A large-scale
in-the-wild robot manipulation dataset,” 2024.

[4] K. Black, M. Nakamoto, P. Atreya, H. Walke, C. Finn, A. Kumar,
and S. Levine, “Zero-shot robotic manipulation with pretrained image-
editing diffusion models,” arXiv preprint arXiv:2310.10639, 2023.

[5] Y. Du, S. Yang, B. Dai, H. Dai, O. Nachum, J. Tenenbaum, D. Schu-
urmans, and P. Abbeel, “Learning universal policies via text-guided
video generation,” Advances in Neural Information Processing Sys-
tems, vol. 36, 2024.

[6] I. Kapelyukh, V. Vosylius, and E. Johns, “Dall-e-bot: Introducing web-
scale diffusion models to robotics,” IEEE Robotics and Automation
Letters, 2023.

[7] Y. Du, M. Yang, P. Florence, F. Xia, A. Wahid, B. Ichter, P. Sermanet,
T. Yu, P. Abbeel, J. B. Tenenbaum et al., “Video language planning,”
arXiv preprint arXiv:2310.10625, 2023.

[8] A. Ajay, S. Han, Y. Du, S. Li, A. Gupta, T. Jaakkola, J. Tenen-
baum, L. Kaelbling, A. Srivastava, and P. Agrawal, “Compositional
foundation models for hierarchical planning,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[9] J. Gao, K. Hu, G. Xu, and H. Xu, “Can pre-trained text-to-image
models generate visual goals for reinforcement learning?” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[10] O. Mees, L. Hermann, E. Rosete-Beas, and W. Burgard, “Calvin: A
benchmark for language-conditioned policy learning for long-horizon
robot manipulation tasks,” in IEEE Robotics and Automation Letters
(RAL), 2021.

[11] H. Walke, K. Black, A. Lee, M. J. Kim, M. Du, C. Zheng, T. Zhao,
P. Hansen-Estruch, Q. Vuong, A. He, V. Myers, K. Fang, C. Finn, and
S. Levine, “Bridgedata v2: A dataset for robot learning at scale,” in
Conference on Robot Learning (CoRL), 2023.

[12] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,”
in International conference on machine learning. PMLR, 2015, pp.
2256–2265.

[13] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic
models,” Advances in neural information processing systems, vol. 33,
pp. 6840–6851, 2020.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,”
Advances in neural information processing systems, vol. 30, 2017.

[15] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu et al., “Rt-1:
Robotics transformer for real-world control at scale,” arXiv preprint
arXiv:2212.06817, 2022.

[16] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song,
“Diffusion policy: Visuomotor policy learning via action diffusion,”
arXiv preprint arXiv:2303.04137, 2023.

[17] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choro-
manski, T. Ding, D. Driess, A. Dubey, C. Finn et al., “Rt-2: Vision-
language-action models transfer web knowledge to robotic control,”
arXiv preprint arXiv:2307.15818, 2023.

[18] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black,
O. Mees, S. Dasari, J. Hejna, C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y.
Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh, C. Finn, and S. Levine,
“Octo: An open-source generalist robot policy,” in Proceedings of
Robotics: Science and Systems, Delft, Netherlands, 2024.

[19] R. Doshi, H. Walke, O. Mees, S. Dasari, and S. Levine, “Scaling
cross-embodied learning: One policy for manipulation, navigation,
locomotion and aviation,” in Conference on Robot Learning, 2024.

[20] M. Zawalski, W. Chen, K. Pertsch, O. Mees, C. Finn, and S. Levine,
“Robotic control via embodied chain-of-thought reasoning,” in Con-
ference on Robot Learning, 2024.

[21] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and
V. Kumar, “Cacti: A framework for scalable multi-task multi-scene
visual imitation learning,” arXiv preprint arXiv:2212.05711, 2022.

[22] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

[23] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,
C. Tan, J. Peralta, B. Ichter et al., “Scaling robot learning with

semantically imagined experience,” arXiv preprint arXiv:2302.11550,
2023.

[24] A. Stone, T. Xiao, Y. Lu, K. Gopalakrishnan, K.-H. Lee, Q. Vuong,
P. Wohlhart, S. Kirmani, B. Zitkovich, F. Xia et al., “Open-world
object manipulation using pre-trained vision-language models,” arXiv
preprint arXiv:2303.00905, 2023.

[25] A. Peng, I. Sucholutsky, B. Z. Li, T. R. Sumers, T. L. Griffiths,
J. Andreas, and J. A. Shah, “Learning with language-guided state
abstractions,” arXiv preprint arXiv:2402.18759, 2024.

[26] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in International Conference on Machine Learning. PMLR,
2022, pp. 9118–9147.

[27] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue:
Embodied reasoning through planning with language models,” arXiv
preprint arXiv:2207.05608, 2022.

[28] A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho,
J. Ibarz, A. Irpan, E. Jang, R. Julian et al., “Do as i can, not as i say:
Grounding language in robotic affordances,” in Conference on robot
learning. PMLR, 2023, pp. 287–318.

[29] K. Lin, C. Agia, T. Migimatsu, M. Pavone, and J. Bohg, “Text2motion:
From natural language instructions to feasible plans,” Autonomous
Robots, vol. 47, no. 8, pp. 1345–1365, 2023.

[30] Z. Wang, S. Cai, G. Chen, A. Liu, X. Ma, and Y. Liang, “De-
scribe, explain, plan and select: Interactive planning with large lan-
guage models enables open-world multi-task agents,” arXiv preprint
arXiv:2302.01560, 2023.

[31] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement
learning without exploration,” in International conference on machine
learning. PMLR, 2019, pp. 2052–2062.

[32] S. K. S. Ghasemipour, D. Schuurmans, and S. S. Gu, “Emaq:
Expected-max q-learning operator for simple yet effective offline and
online rl,” in International Conference on Machine Learning. PMLR,
2021, pp. 3682–3691.

[33] H. Chen, C. Lu, C. Ying, H. Su, and J. Zhu, “Offline reinforce-
ment learning via high-fidelity generative behavior modeling,” arXiv
preprint arXiv:2209.14548, 2022.

[34] P. Hansen-Estruch, I. Kostrikov, M. Janner, J. G. Kuba, and S. Levine,
“Idql: Implicit q-learning as an actor-critic method with diffusion
policies,” arXiv preprint arXiv:2304.10573, 2023.

[35] K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser,
M. Plappert, J. Tworek, J. Hilton, R. Nakano et al., “Training verifiers
to solve math word problems,” arXiv preprint arXiv:2110.14168, 2021.

[36] H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee,
J. Leike, J. Schulman, I. Sutskever, and K. Cobbe, “Let’s verify step
by step,” arXiv preprint arXiv:2305.20050, 2023.

[37] A. Hosseini, X. Yuan, N. Malkin, A. Courville, A. Sordoni, and
R. Agarwal, “V-star: Training verifiers for self-taught reasoners,” arXiv
preprint arXiv:2402.06457, 2024.

[38] W. Liu, Y. Du, T. Hermans, S. Chernova, and C. Paxton, “Structdif-
fusion: Language-guided creation of physically-valid structures using
unseen objects,” arXiv preprint arXiv:2211.04604, 2022.

[39] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence,
I. Mordatch, S. Levine, K. Hausman et al., “Grounded decoding:
Guiding text generation with grounded models for robot control,”
arXiv preprint arXiv:2303.00855, 2023.

[40] A. Z. Ren, J. Clark, A. Dixit, M. Itkina, A. Majumdar, and D. Sadigh,
“Explore until confident: Efficient exploration for embodied question
answering,” in Robotics Science and Systems (RSS), 2024.

[41] “Robots that ask for help: Uncertainty alignment for large language
model planners,” arXiv preprint arXiv:2307.01928, 2023.

[42] S. Nair, E. Mitchell, K. Chen, B. Ichter, S. Savarese, and C. Finn,
“Learning language-conditioned robot behavior from offline data and
crowd-sourced annotation,” Conference on Robot Learning (CoRL),
2021.

[43] L. P. Kaelbling, “Learning to achieve goals,” in IJCAI, vol. 2. Citeseer,
1993, pp. 1094–8.

[44] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value func-
tion approximators,” in International conference on machine learning.
PMLR, 2015, pp. 1312–1320.

[45] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, O. Pieter Abbeel, and W. Zaremba, “Hind-
sight experience replay,” Advances in neural information processing
systems, vol. 30, 2017.

[46] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots that
use language,” Annual Review of Control, Robotics, and Autonomous
Systems, vol. 3, pp. 25–55, 2020.

[47] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and
H. Ben Amor, “Language-conditioned imitation learning for robot ma-
nipulation tasks,” Advances in Neural Information Processing Systems,
vol. 33, pp. 13 139–13 150, 2020.

[48] O. Mees, L. Hermann, and W. Burgard, “What matters in language
conditioned robotic imitation learning over unstructured data,” IEEE
Robotics and Automation Letters (RA-L), vol. 7, no. 4, pp. 11 205–
11 212, 2022.

[49] O. Mees, J. Borja-Diaz, and W. Burgard, “Grounding language with
visual affordances over unstructured data,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
London, UK, 2023.

[50] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” arXiv preprint arXiv:2005.07648, 2020.

[51] A. Mandlekar, F. Ramos, B. Boots, S. Savarese, L. Fei-Fei, A. Garg,
and D. Fox, “Iris: Implicit reinforcement without interaction at scale
for learning control from offline robot manipulation data,” in 2020
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2020, pp. 4414–4420.

[52] S. Park, D. Ghosh, B. Eysenbach, and S. Levine, “Hiql: Offline
goal-conditioned rl with latent states as actions,” Advances in Neural
Information Processing Systems, vol. 36, 2024.

[53] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning,”
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

[54] P.-L. Bacon, J. Harb, and D. Precup, “The option-critic architecture,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017.

[55] J. Schmidhuber, “Learning to generate sub-goals for action sequences,”
in Artificial neural networks, 1991, pp. 967–972.

[56] P. Dayan and G. E. Hinton, “Feudal reinforcement learning,” Advances
in neural information processing systems, vol. 5, 1992.

[57] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum, “Hier-
archical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation,” Advances in neural information processing
systems, vol. 29, 2016.

[58] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg,
D. Silver, and K. Kavukcuoglu, “Feudal networks for hierarchical rein-
forcement learning,” in International conference on machine learning.
PMLR, 2017, pp. 3540–3549.

[59] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learning multi-level
hierarchies with hindsight,” arXiv preprint arXiv:1712.00948, 2017.

[60] O. Nachum, S. S. Gu, H. Lee, and S. Levine, “Data-efficient hi-
erarchical reinforcement learning,” Advances in neural information
processing systems, vol. 31, 2018.

[61] O. Nachum, S. Gu, H. Lee, and S. Levine, “Near-optimal representa-
tion learning for hierarchical reinforcement learning,” arXiv preprint
arXiv:1810.01257, 2018.

[62] A. Gupta, V. Kumar, C. Lynch, S. Levine, and K. Hausman, “Relay
policy learning: Solving long-horizon tasks via imitation and reinforce-
ment learning,” arXiv preprint arXiv:1910.11956, 2019.

[63] A. Ajay, A. Kumar, P. Agrawal, S. Levine, and O. Nachum, “Opal:
Offline primitive discovery for accelerating offline reinforcement
learning,” arXiv preprint arXiv:2010.13611, 2020.

[64] C. Lynch, M. Khansari, T. Xiao, V. Kumar, J. Tompson, S. Levine,
and P. Sermanet, “Learning latent plans from play,” in Conference on
Robot Learning (CoRL). PMLR, 2020, pp. 1113–1132.

[65] E. Rosete-Beas, O. Mees, G. Kalweit, J. Boedecker, and W. Burgard,
“Latent plans for task-agnostic offline reinforcement learning,” in
Conference on Robot Learning. PMLR, 2023, pp. 1838–1849.

[66] T. Zhang, S. Guo, T. Tan, X. Hu, and F. Chen, “Generating adjacency-
constrained subgoals in hierarchical reinforcement learning,” Advances
in neural information processing systems, vol. 33, pp. 21 579–21 590,
2020.

[67] K. Pertsch, Y. Lee, and J. Lim, “Accelerating reinforcement learning
with learned skill priors,” in Conference on robot learning. PMLR,
2021, pp. 188–204.

[68] E. Chane-Sane, C. Schmid, and I. Laptev, “Goal-conditioned reinforce-
ment learning with imagined subgoals,” in International Conference
on Machine Learning. PMLR, 2021, pp. 1430–1440.

[69] N. Savinov, A. Dosovitskiy, and V. Koltun, “Semi-parametric topolog-
ical memory for navigation,” arXiv preprint arXiv:1803.00653, 2018.

[70] B. Eysenbach, R. R. Salakhutdinov, and S. Levine, “Search on the re-
play buffer: Bridging planning and reinforcement learning,” Advances
in neural information processing systems, vol. 32, 2019.

[71] S. Nair and C. Finn, “Hierarchical foresight: Self-supervised learning
of long-horizon tasks via visual subgoal generation,” arXiv preprint
arXiv:1909.05829, 2019.

[72] S. Nasiriany, V. Pong, S. Lin, and S. Levine, “Planning with goal-
conditioned policies,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[73] Z. Huang, F. Liu, and H. Su, “Mapping state space using landmarks for
universal goal reaching,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[74] C. Hoang, S. Sohn, J. Choi, W. Carvalho, and H. Lee, “Successor
feature landmarks for long-horizon goal-conditioned reinforcement
learning,” Advances in neural information processing systems, vol. 34,
pp. 26 963–26 975, 2021.

[75] J. Kim, Y. Seo, and J. Shin, “Landmark-guided subgoal generation in
hierarchical reinforcement learning,” Advances in neural information
processing systems, vol. 34, pp. 28 336–28 349, 2021.

[76] L. Zhang, G. Yang, and B. C. Stadie, “World model as a graph:
Learning latent landmarks for planning,” in International conference
on machine learning. PMLR, 2021, pp. 12 611–12 620.

[77] D. Shah, B. Eysenbach, G. Kahn, N. Rhinehart, and S. Levine, “Rapid
exploration for open-world navigation with latent goal models,” arXiv
preprint arXiv:2104.05859, 2021.

[78] K. Fang, P. Yin, A. Nair, and S. Levine, “Planning to practice:
Efficient online fine-tuning by composing goals in latent space,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022, pp. 4076–4083.

[79] J. Li, C. Tang, M. Tomizuka, and W. Zhan, “Hierarchical plan-
ning through goal-conditioned offline reinforcement learning,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 10 216–10 223,
2022.

[80] J. Kim, Y. Seo, S. Ahn, K. Son, and J. Shin, “Imitating graph-
based planning with goal-conditioned policies,” arXiv preprint
arXiv:2303.11166, 2023.

[81] K. Fang, P. Yin, A. Nair, H. R. Walke, G. Yan, and S. Levine,
“Generalization with lossy affordances: Leveraging broad offline data
for learning visuomotor tasks,” in Conference on Robot Learning.
PMLR, 2023, pp. 106–117.

[82] T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to
follow image editing instructions,” in Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

[83] J. Xing, M. Xia, Y. Zhang, H. Chen, W. Yu, H. Liu, X. Wang, T.-T.
Wong, and Y. Shan, “Dynamicrafter: Animating open-domain images
with video diffusion priors,” arXiv preprint arXiv:2310.12190, 2023.

[84] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
preprint arXiv:2207.12598, 2022.

[85] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon,
and B. Poole, “Score-based generative modeling through stochastic
differential equations,” arXiv preprint arXiv:2011.13456, 2020.

[86] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
synthesis,” Advances in neural information processing systems, vol. 34,
pp. 8780–8794, 2021.

[87] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2022, pp. 10 684–10 695.

[88] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” International Conference on Intelligent
Robots and Systems, 2017.

[89] C. Zheng, B. Eysenbach, H. Walke, P. Yin, K. Fang, R. Salakhutdinov,
and S. Levine, “Stabilizing contrastive rl: Techniques for offline goal
reaching,” arXiv preprint arXiv:2306.03346, 2023.

[90] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal,
H. Kim, V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, and
et al., “The” something something” video database for learning and
evaluating visual common sense,” in IEEE international conference
on computer vision (ICCV), 2017.

[91] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair,
R. Rafailov, E. Foster, G. Lam, P. Sanketi, Q. Vuong, T. Kollar,
B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine, P. Liang, and
C. Finn, “Openvla: An open-source vision-language-action model,”
arXiv preprint arXiv:2406.09246, 2024.

[92] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and A. Courville, “Film:
Visual reasoning with a general conditioning layer,” in Proceedings of
the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

APPENDIX

A. Classifier Training

Training objective: The classifier is trained using binary cross-entropy loss:

J (θ) = E
(s,g,l)∼Dl,a

[log (fθ(s, g, l))]

+ E
(s−,g−,l−)∼D−

l,a

[
log

(
1− fθ(s

−, g−, l−)
)]

.
(2)

where Dl,a is the language-annotated dataset that consists of trajectory and language task pairs, and N is a function for
generating negative examples from the dataset. Given a dataset Dl,a, N generates negatives from Dl,a in the following ways:

1) Wrong Instruction: (s, g, l′) where l′ is sampled from a different transition than s and g.
2) Wrong Goal Image: (s, g′, l) where g′ is sampled from a different transition than s and l.
3) Reverse Direction: (g, s, l), where the order of the current image observation and the subgoal image have been

switched.
Across all our experiments, we sample 50% of each training batch to be positive examples and 50% of each training

batch to be negative examples. Of the negative examples, 40% are “wrong instruction”, 40% are “reverse direction”, and
20% are “wrong goal image”.

Goal sampling: In a given training tuple (st, g, l), g is sampled by taking the goal image from the st+k, where k is a
uniformly sampled integer from 16 to 24.

Network architecture and training hyperparameters: The classifier network architecture consists of a ResNet-34
encoder from [11], followed by a two-layer MLP with layers of dimension 256. Separate encoders are used to encode the
image observations and the goal images (parameters are not shared between the two). Both of these encoders use FiLM
conditioning [92] after each residual block to condition on the language instruction. Classifier networks are trained using a
learning rate of 3× 10−4 and a batch size of 256 for 100, 000 gradient steps. A dropout rate of 0.1 is used.

B. Image Augmentations

Fig. 4: Image augmentation examples Examples of images from
the Bridge dataset before and after having the image augmentations
applied to them that are used during policy and classifier training.

During training of low-level policy networks and classi-
fier networks, we apply the following augmentations to the
image observations and the goal images, in the following
order:

1) Random Resized Crop:
• scale: (0.8, 1.0)
• ratio:(0.9, 1.1)

2) Random Brightness Shift:
• shift ratio: 0.2

3) Random Contrast:
• Contrast range: (0.8, 1.2)

4) Random Saturation:
• Saturation range: (0.8, 1.2)

5) Random Hue:
• shift ratio: 0.1

Figure 4 visualizes examples from the Bridge dataset before and after augmentations are applied.

C. Qualitative Analysis

1) Classifier rankings: We show examples of how the classifier network ranks generated goal images on tasks from
Scene D of our physical experimental domain. Figures 5a, 5b, 5c show examples of the classifier correctly ranking the
generated goal images (highly ranked images correspond to making progress towards correctly completing the language
instruction), while Fig. 5d shows an example of the classifier erroneously giving high rankings to goal images that do not
make progress towards completing the language instruction. Note that while the classifier scores can be close across various
goal images, so long as the relative ranking of the generated goal images is correct, then incorrect subgoal images will be
rejected and correct subgoal images will be passed to the low-level policy.

2) Trajectory Visualizations: We show examples of rollouts of GHIL-Glue (SuSIE) on our physical experiment set up.
These examples showcase when GHIL-Glue successfully filters out off-task subgoal images (Figure 6a), as well as an
instance of when GHIL-Glue nearly causes a failure (Figure 6b).

Fig. 5: Classifier ranking examples Examples of the classifier network rankings on 8 generated candidate subgoals given an observation
from Scene D of the physical experiments and a language instruction. Note that during GHIL-Glue inference, only the first-ranked subgoal
is passed to the low-level policy.

(a) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal images where the robot is grasping the sushi
higher than the subgoal images where the robot is grasping the drawer handle.

(b) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal images where the robot moves to place the grasped
sushi into the bowl higher than the subgoal images where the robot moves its gripper towards the drawer handle. It ranks the subgoal
image with the hallucinated blue bowl-like artifact last.

(c) Correct Example of Classifier Filtering The classifier correctly ranks the subgoal image highest that shows the robot completing the
correct task – only a single generated subgoal image shows the robot placing the sushi into the bowl, while all other generated subgoal
images show the robot placing the sushi into the drawer.

(d) The classifier incorrectly ranks the subgoal images higher where the robot is placing the banana into the bowl than it ranks the subgoal
images where the robot is placing the banana into the drawer. This could be due to there being a strong bias for placing objects in bowls
in the Bridge V2 training data.

Fig. 6: GHIL-Glue (SuSIE) Trajectory Visualization Visualization of a rollout of GHIL-Glue (SuSIE) on Scene D in the physical
experiments set up. The top row shows the current image observation at every timestep at which the video prediction model is queried.
The second and third rows show the highest and lowest ranked generated subgoal images out of the 8 generated subgoal images, as ranked
by the classifier. Note that during GHIL-Glue inference, only the first-ranked subgoal is passed to the low-level policy.

(a) “Put the sushi into the bowl.” This rollout shows two examples of the classifier filtering preventing the policy from going off-task:
at t = 0, the lowest ranked generated subgoal shows the gripper grasping the drawer handle instead of moving to grasp the sushi; at
t = 30, the lowest ranked generated subgoal shows the gripper moving towards the drawer handle instead of towards placing the sushi
into the bowl. Note the hallucinated objects and artifacts visible in the goal images at t = 15, 30, 45. Augmentation de-synchronization
helps to make the low-level policy and classifier robust to hallucinated artifacts such as these.

(b) “Put the banana into the drawer.” In this rollout, classifier filtering fails and causes a near-miss. At t = 15, the classifier ranks
a subgoal image highest that shows the robot placing the banana into the bowl instead of the drawer. However, at t = 30, when the
robot reaches the state specified by this subgoal image, the subsequent generated subgoals all show the robot correctly placing the banana
into the drawer. Although, as in this example, the classifier network can occasionally rank incorrect subgoal images higher than correct
subgoal images, such errors occur infrequently as GHIL-Glue (SuSIE/UniPI) outperforms base-SuSIE/UniPi across all of our physical
and simulated experiments.

Fig. 7: Generated Subgoal Image on CALVIN A subgoal image
generated by the SuSIE video model on the unseen environment
D of the CALVIN benchmark. The colors and shapes of objects
are different in each of the four CALVIN environments, and since
the model was not trained on data from environment D, it often
generates images with incorrect shapes and colors. Augmentation de-
synchronization is important for the low-level policy and classifier to
be able to handle these mismatches between image observations and
corresponding generated subgoal images.

3) Qualitative Analysis of Augmentation De-
synchronization: We see that when applying augmentation
de-synchronization, the number of failures due to low-level
policy errors (missed grasps, dropping held objects, etc.)
decreases, indicating that augmentation de-synchronization
is important for the low-level policy to be able to correctly
interpret and follow the subgoal images generated by the
video prediction model. This is particularly important
in domains where there is a large visual generalization
gap between the training data and the evaluation tasks.
For example, in the CALVIN benchmark, the colors and
shapes of objects differ between the training and evaluation
scenes. This difference causes the subgoals generated by
the video prediction model to often contain objects with
incorrect shapes and colors (Figure 7). Augmentation
de-synchronization seems to be critical to allowing the
low-level policy to be robust to these hallucinations and
artifacts.

D. Additional Ablation Experiments

1) Effect of Augmentation Desynchronization: We ablate the different components of GHIL-Glue when applied to SuSIE
in the CALVIN benchmark (Table III). Removing the augmentation desynchronization from only the low-level policy
results in similar performance to base-SuSIE and GHIL-Glue (SuSIE) with the augmentation desynchronization removed
from both the low-level policy and the classifier. This suggests that the low-level policy performance of SuSIE without
augmentation desynchronization is a significant bottleneck for SuSIE–even when selecting better subgoals via the use of
filtering, performance cannot increase if the low-level policy cannot reliably reach those goals. Conversely, removing the
augmentation desynchronization from only the classifier results in similar performance to GHIL-Glue (SuSIE) without
subgoal filtering. This suggests that, like the low-level policy, augmentation desynchronization is important for the classifier
network to correctly perform its function in GHIL-Glue (SuSIE).

Tasks completed in a row
Method 1 2 3 4 5 Avg. Len.

SuSIE 89.8% 75.0% 57.5% 41.8% 29.8% 2.94
GHIL-Glue (SuSIE) - Aug De-sync Only 95.2% 84.0% 69.5% 56.0% 46.2% 3.51
GHIL-Glue (SuSIE) - Subgoal Filtering Only 88.5% 75.5% 56.2% 43.0% 32.5% 2.96
GHIL-Glue (SuSIE) - w/o Aug De-sync on policy 91.5% 74.2% 56.0% 41.2% 29.8% 2.93
GHIL-Glue (SuSIE) - w/o Aug De-sync on classifier 95.0% 86.2% 70.0% 57.8% 47.0% 3.56
GHIL-Glue (SuSIE) 95.2% 88.5% 73.2% 62.5% 49.8% 3.69

TABLE III: Effect of Augmentation Desynchronization in GHIL-Glue (SuSIE) Success rates on the validation tasks from
the D environment of the CALVIN Challenge averaged across 4 random seeds. Results are shown comparing the performance
of SuSIE, GHIL-Glue (SuSIE), and ablations of GHIL-Glue (SuSIE). GHIL-Glue (SuSIE) - Aug De-sync Only is GHIL-Glue
without applying subgoal filtering, GHIL-Glue (SuSIE) - Subgoal Filtering Only is GHIL-Glue without applying augmentation
de-synchronization to either the low-level policy or the subgoal classifier, GHIL-Glue (SuSIE) - w/o Aug De-sync on policy
is GHIL-Glue without applying augmentation de-synchronization on the low-level policy, and GHIL-Glue (SuSIE) - w/o Aug
De-sync on classifier is GHIL-Glue without applying augmentation de-synchronization on the subgoal classifier.

2) Number of Candidate Subgoals: We conduct an ablation over the number of candidate subgoals used for subgoal
filtering in GHIL-Glue (SuSIE) in the CALVIN benchmark (Table IV). We find that GHIL-Glue (SuSIE) achieves similar
performance whether 4, 8, or 16 candidate subgoals are used. In our main results (Section V-C), we report the performance
of GHIL-Glue (SuSIE) on the CALVIN benchmark when using 8 candidate subgoals for filtering. For GHIL-Glue (UniPi)
on the CALVIN benchmark, we use 4 candidate subgoals for filtering, due to the increased computation burden of generating
video subgoals with the UniPi video model vs. generating image subgoals with the SuSIE image model. In our physical
experiments, we run GHIL-Glue (SuSIE) using 4 candidate subgoals for filtering.

Tasks completed in a row
Method 1 2 3 4 5 Avg. Len.

GHIL-Glue (SuSIE) - 4 samples 95.2% 86.0% 71.2% 60.5% 50.0% 3.63
GHIL-Glue (SuSIE) - 8 samples 95.2% 88.5% 73.2% 62.5% 49.8% 3.69
GHIL-Glue (SuSIE) - 16 samples 95.0% 86.5% 72.8% 60.8% 48.0% 3.63

TABLE IV: Effect of Number of Candidate Goal Images Sampled in GHIL-Glue (SuSIE) Success rates on the validation tasks from
environment D of the CALVIN Challenge when using GHIL-Glue (SuSIE) when using 4, 8, or 16 candidate goal images with classifier
filtering. Results are averaged across 4 random seeds. Results are similar across all numbers of samples, with 8 samples performing the
best by a slight margin.

	Introduction
	Related work
	Preliminaries
	GHIL-Glue
	Subgoal Filtering
	Image Augmentation De-Synchronization

	Experiments
	Experimental Domains
	Comparison Algorithms
	Experimental Results

	Conclusion
	References
	Appendix
	Classifier Training
	Image Augmentations
	Qualitative Analysis
	Classifier rankings
	Trajectory Visualizations
	Qualitative Analysis of Augmentation De-synchronization

	Additional Ablation Experiments
	Effect of Augmentation Desynchronization
	Number of Candidate Subgoals

